

Modeling Natural Language via Quantum Many-body Wave **Function and Tensor Network**

Yitong Yao, Peng Zhang*, Jing Zhang

College of Intelligence and Computing, Tianjin University, China

Introduction

Quantum Many-body Wave Function inspired Language Modeling (QMWF-LM)

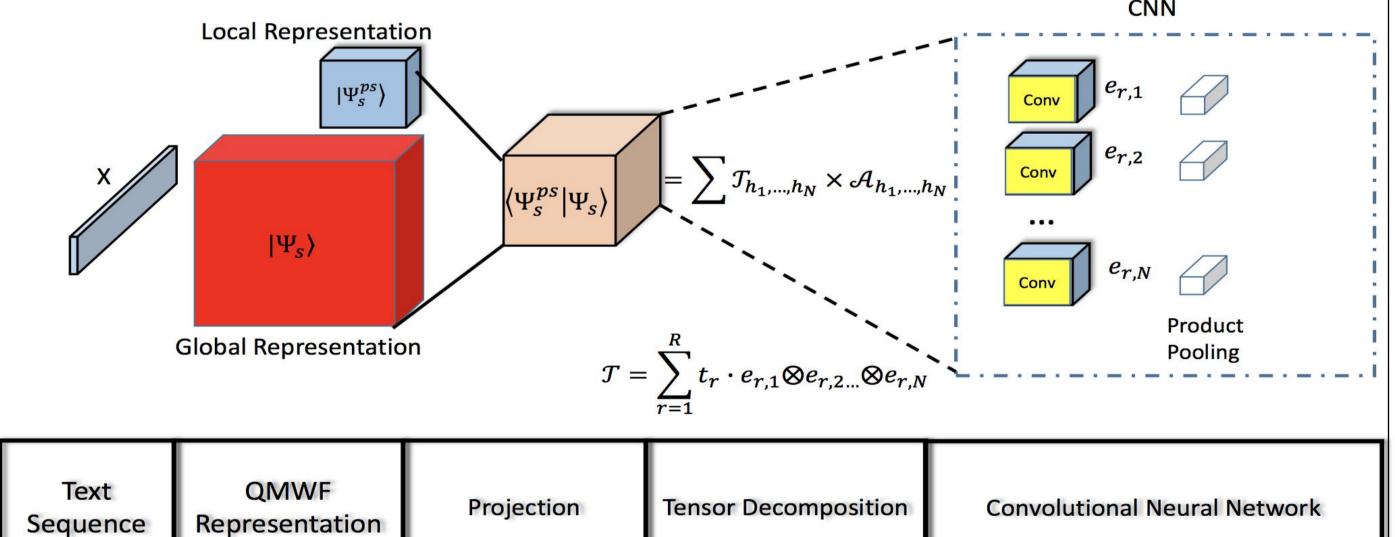
- regards different words as diverse particles in a many-body system, and a word containing multiple meanings equals to a particle lying in a superposition.
- Thus directly use the wave function to represent the words in order to express the complex interactions between words with different meanings.

Tensor Space Language Model (TSLM)

- TSLM is a generalization of the n-gram language model.
- a recursive calculation of conditional probability for language modeling is derived via tensor decomposition in TSLM.

QMWF-LM

Product State representation for a sequence of words


$$|\psi_S^{ps}\rangle = |w_1\rangle \otimes \cdots \otimes |w_N\rangle$$

• Global representation:

$$|\psi_S\rangle = \sum_{h_1...h_N}^M \mathcal{T}_{h_1...h_N} |\phi_{h_1}\rangle \otimes \cdots \otimes |\phi_{h_N}\rangle$$

• Projection:

$$\langle \psi_{S} | \psi_{S}^{ps} \rangle = \sum_{h_{1},...,h_{N}}^{M} \mathcal{T}_{h_{1}...h_{N}} \times \mathcal{A}_{h_{1}...h_{N}} = \sum_{r=1}^{R} t_{r} \prod_{i=1}^{N} (\sum_{h_{i}=1}^{M} e_{r,i,h_{i}} \cdot \alpha_{i,h_{i}})$$

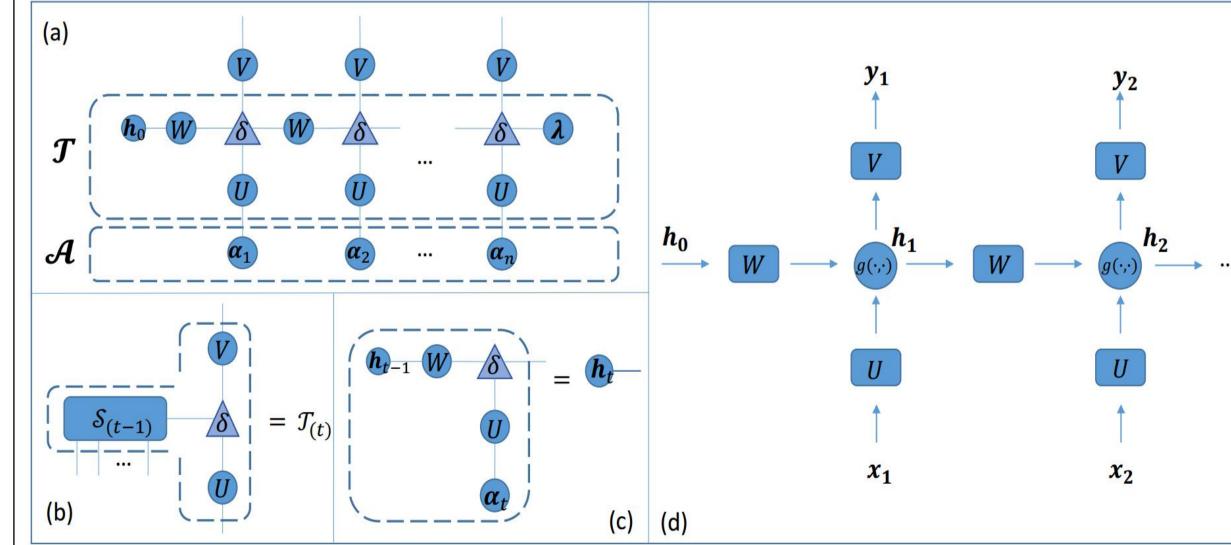
Table 1: Projection using CNN architecture

 $\boldsymbol{x}_{i} = (\alpha_{i,h_{1}}, \dots, \alpha_{i,h_{M}})^{T}$ $\Sigma_{r,i} = \sum_{h_{i}=1}^{M} e_{r,i,h_{i}} \cdot \alpha_{i,h_{i}}$ Input Convolution $\Pi_r = \prod_{i=1}^{N} \Sigma_{r,i}$ Product pooling Output

TSLM

Sentence representation:

$$\mathbf{s} = \mathbf{w}_1 \otimes \cdots \otimes \mathbf{w}_n = \sum_{d_1, \cdots, d_n = 1}^m \mathcal{A}_{d_1 \cdots d_n} e_{d_1} \otimes \cdots \otimes e_{d_n}$$


Corpus representation:

$$c = \sum_{i}^{m} p_{i} s_{i} = \sum_{d_{1}, \cdots, d_{n}=1}^{m} \mathcal{T}_{d_{1} \dots d_{n}} e_{d_{1}} \otimes \cdots \otimes e_{d_{n}}$$

Sentence probability:

$$p(\pmb{s}) = \langle \pmb{s}, \pmb{c} \rangle = \sum_{d_1, \cdots, d_n = 1}^m \mathcal{T}_{d_1 \dots d_n} \mathcal{A}_{d_1 \dots d_n}$$
 • The conditional probability $p(w_i|w_1^{i-1})$ can be computed as:

$$p(w_i|w_1^{i-1}) = \frac{p(w_1^i)}{p(w_1^{i-1})} = \frac{\langle w_1^i,c\rangle}{\langle w_1^{i-1},c\rangle}$$

Computing the conditional probability recursively:

$$p(w_t|w_1^{t-1}) = softmax(y_t)$$

$$y_t = Vh_t$$

$$h_t = g(Wh_{t-1}, U\alpha_t)$$

$$g(a, b) = a \odot b$$

Experimental Results

	Dataset:
	WIKIQA
1	N / 1 1

- ➤ Model: QMWF-LM
- > Dataset: YahooQA
- ➤ Model: QMWF-LM

QLM	0.512	0.515
NNQLM-II	0.650	0.659
QA-CNN (Santos et al.) [10]	0.670	0.682
AP-CNN (Santos et al.) [10]	0.688	0.696
QMWF-LM-char	0.657^{α}	0.679^{α}
QMWF-LM-word	$0.695 \alpha \beta$	0.710 $\alpha\beta$
Model	P@1	MRR
Random guess	0.200	0.457
QLM	0.395	0.604
NNQLM-II	0.466	0.673
QA-CNN (Santos et al.)[10]	0.564	0.727
AP-CNN (Santos et al.)[10]	0.560	0.726
QMWF-LM-char	$0.513 \alpha \beta$	$0.696 \alpha \beta$
QMWF-LM-word	$0.575 \alpha \beta$	$0.745^{\ \alpha\beta}$

➤ Dataset: PTB, WikiText-2 Model: TSLM

Model

	PTB				WikiText-2			
Model	Hidden size	Layers	Valid	Test	Hidden size	Layers	Valid	Test
KN-5(Mikolov and Zweig 2012)	-	-	-	141.2	office and the second	liges,		
RNN(Mikolov and Zweig 2012)	300	1	-	124.7	ш	-	-	-
LSTM(Zaremba, Sutskever, and Vinyals 2014)	200	2	120.7	114.5	-	-	-	-
LSTM(Grave, Joulin, and Usunier 2016)	1024	1	_	82.3	1024	1	_	99.3
LSTM(Merity et al. 2017)	650	2	84.4	80.6	650	2	108.7	100.9
RNN†	256	1	130.3	124.1	512	1	126.0	120.4
LSTM†	256	1	118.6	110.3	512	1	105.6	101.4
TSLM	256	1	117.2	108.1	512	1	104.9	100.4
RNN+MoS†(Yang et al. 2018)	256	1	88.7	84.3	512	1	85.6	81.8
TSLM+MoS	256	1	86.4	83.6	512	1	83.9	81.0

- Main References
 [1] Zhang, Peng, et al. "A quantum many-body wave function inspired language modeling approach." Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018.
- [2] Zhang, Lipeng, et al. "A generalized language model in tensor space." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019.

Conclusion

- QMWF-LM shows that it is feasible to use quantum theory to represent the interactions among words with multiple meanings.
- ☐ A generalized language model (TSLM) was introduced inspired by QMWF-LM, adopting the same method to express the word using quantum wave function, deriving a recursive representation of the conditional probability distribution